Hallmarks of Cancer: Avoiding Immune Destruction


Posted by Chris S on Jun 12, 2019 3:15:00 AM

Some cancer cells adapt mechanisms to evade detection and destruction by the host's immune system. One way cells do this is by hijacking normal mechanisms of immune checkpoint control and modulation of the innate immune response via STING.

READ MORE >

Topics: Cell Biology, Cancer Research

Who am I: Can a cellular identity crisis lead to cancer progression?


Posted by Antony W on May 29, 2019 3:10:00 AM

            The process of epithelial-mesenchymal transition (EMT), whereby differentiated epithelial cells transform into cells with more mesenchymal characteristics, was first described by pioneering Harvard biologist Elizabeth “Betty” Hay in the 1980s.

READ MORE >

Topics: Cell Biology, Cancer Research

Hallmarks of Cancer: Evading Growth Suppressors


Posted by Chris S on May 1, 2019 3:10:00 AM

Cancer cells resist inhibitory signals that might otherwise stop their growth. The major pathways involved are Autophagy and Death Receptor Signaling (Apoptosis), both of which can ultimately lead to cell death, and reduction in tumor growth.

READ MORE >

Topics: Cell Biology, Cancer Research

Hallmarks of Cancer: Enabling Replicative Immortality


Posted by Chris S on Apr 17, 2019 3:10:00 AM

Cancer cells can revert to a pre-differentiated, stem-cell-like phenotype, allowing uninhibited cellular division and other metabolic adaptations that enable survival in adverse conditions.

READ MORE >

Topics: Cell Biology, Cancer Research

Hallmarks of Cancer: Sustaining Proliferative Signaling


Posted by Chris S on Apr 3, 2019 3:15:00 AM

Cancer cells stimulate their own growth, which means they become self-sufficient in growth signals, and no longer depend on external signals (like Epidermal Growth Factor EGF/ EGFR). Proliferation depends highly on these three important pathways: Akt, MAPK/Erk, and MTOR.

READ MORE >

Topics: Cell Biology, Cancer Research

Hallmarks of Cancer: Inducing Angiogenesis Energetics


Posted by Chris S on Mar 20, 2019 3:15:00 AM

Cancer cells stimulate the growth of blood vessels to supply nutrients to tumors. Angiogenesis is the formation of new blood vessels from pre-existing blood vessels. This plays an important role in tumor growth.

READ MORE >

Topics: Cell Biology, Cancer Research

Hallmarks of Cancer: Deregulating Cellular Energetics


Posted by Chris S on Feb 27, 2019 3:15:00 AM

Cancer cells need a lot of energy to grow fast—to do so, they show abnormal metabolic pathways.

READ MORE >

Topics: Cell Biology, Cancer Research

Hallmarks of Cancer: Resisting Cell Death


Posted by Chris S on Jan 23, 2019 3:15:00 AM

One thing we know about cancer cells: they can resist death. They evade apoptosis, the mechanism that programs cell death once cells become damaged. Normally, apoptosis helps keep an organism healthy through growth and development, maintaining body tissue by removing infected or damaged cells. But cancer cells do not follow this process, no matter how abnormally they grow.

READ MORE >

Topics: Cancer Research

Demystifying Multiplex IHC


Posted by Jen Z on Oct 10, 2018 3:15:00 AM

In recent years, immune checkpoint proteins in the tumor microenvironment have been under intense study. If you work in the immuno-oncology field, chances are you are either performing multiplex IHC (mIHC) or would like to. Ultimately, a multiplexed image like the one featured here provides a multi-layered depiction of a tumor, such that each antibody corresponds to a different fluorescent signal. If you want to detect more targets in your IHC, but aren’t sure how to design a panel of antibodies and fluorophores for mIHC, we’ll walk you through the process in this post.

READ MORE >

Topics: IHC, Cancer Research, mIHC, techniques, Immunology

2018 Nobel Prize Awarded to Immunotherapy Pioneers


Posted by Cell Signaling Technology on Oct 3, 2018 3:00:00 AM

Earlier this week, Dr. James Allison and Dr. Tasuku Honjo were announced as joint winners of the 2018 Nobel Prize in Physiology or Medicine for their work in the field of immunotherapy and checkpoint immune regulation. Their studies have sparked decades of clinical advances, and changed the future of cancer therapy. A webinar presented by Dr. Allison in conjunction with Dr. Gordon Freeman and Dr. Philip Gotwals is featured in this week's blog post.

READ MORE >

Topics: Cancer Immunology, Cancer Research, Webinars, Immunotherapy

Subscribe to Email Updates

Recent Posts