CST BLOG: Lab Expectations

The official blog of Cell Signaling Technology® (CST) where we discuss what to expect from your time at the bench, share tips, tricks, and information.

All Posts

4 Steps to Better ChIP results - Step 3- Choosing an Antibody

Part one of this series described the importance of including proper controls to your protocols. In Part 2 we discussed how chromatin preparation affects the final outcome of the experiment. Now, let's take a minute to consider the immunoprecipitating antibody.

Antibodies that are not highly specific to the target of interest may bind unpredictably and increase the background noise; and this may make it more difficult to detect less abundant or lower stability interactions.

Your antibody should meet these criteria:

It should be target specific:

  • The antibody should demonstrate expected expression in positive/negative control cell lines, knockout cells, or siRNA-treated cells.
  • The antibody should show appropriate expression in response to enzyme-specific activators and/or inhibitors
  • The specificity of modification-specific histone antibodies should be verified using a peptide array or peptide ELISA.

It should have an acceptable signal-to-background ratio:

  • Signal to noise should be assessed using isotype controls.
  • The enrichment of known target genes should be at least 10-fold above background, as determined by real-time PCR analysis

The quality of the antibody isn’t the only factor that determines the outcome of the immunoprecipitation; the concentration of antibody can also dramatically affect your results. If the antibody concentration is too high, relative to the amount of chromatin, it may saturate the assay, leading to lower specific signal and/or increased background noise. Conversely, if the concentration of the antibody is too low it may fail to bind all of the target protein in the IP sample, resulting in less efficient immunoprecipitation.

ChIP-Validated Antibody from CST

ChIP validated antibodies from CST are tested according to the criteria described above and each antibody is provided with a recommended starting concentration. But, if your antibody comes from another source you can use these guidelines to help ensure your antibody will work the way you expect it to.

Once the DNA is immunoprecipitated, it can be purified and you can move on to analyzing the results. That will be the focus of our next post, so until next time...

Part 4 . . . now available here

View our ChIP Kits & Reagents
Epigenetics & Chromatin Resources
Learn More About ChIP-seq


This is the third installment of a four-part series on how to improve your ChIP protocol. These posts are adapted from our full-length Guide to Successful Chromatin IP, which you can download by clicking on the button below.

Download the Guide

Carolyn P
Carolyn P
Carolyn manages the Science Writing Team at CST.

Related Posts

Immunology: What cells have a lymphoid lineage and how are they identified?

In humans, hematopoietic stem cells (HSCs) continuously replenish all types of blood cells via a series o...
Emma E Jan 19, 2022 3:00:00 AM

Subcellular Marker Selection for Immunofluorescence

When performing immunofluorescence (IF), it is common to multiplex with several antibodies and/or dyes to...
Ginny B. Jan 12, 2022 3:00:00 AM

2022 Preview

New year, same hustle. Are you ready to take on 2022? We are! Here’s a sneak peek at the content we’re co...
Chris S Jan 5, 2022 3:00:00 AM